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A B S T R A C T   

Structural Equations Modeling (SEM) has enjoyed increased popularity as an analytical method among Industrial 
Marketing Management (IMM) authors over the last years. Despite such popularity, many authors fail to un
derstand the basic principles of the method and reviewers are frequently confronted with manuscripts suffering 
from erroneous applications, insufficient reporting and questionable interpretation of SEM-based findings. 
Addressing this issue, the present article presents – in non-technical language – the most basic concepts related to 
SEM, resolves common misconceptions about the method's application and provides hands-on advice to IMM 
authors and reviewers dealing with SEM-based manuscripts. Structured along ten fundamental questions, the 
article covers issues related to (1) latent variables and their scaling, (2) types of parameters in SEM, (3) un
standardized and standardized estimates, (4) model identification, (5) model constraints, (6) model fit, (7) in
dependence and saturated models, (8) modification indices, (9) nested models, and (10) equivalent models. After 
illustrating these concepts with the use of examples, the article concludes with a list of guidelines addressed both 
to IMM authors crafting manuscripts using SEM and the peers reviewing them.   

1. Introduction 

Structural Equations Modeling (henceforth SEM) is one of the most 
commonly used analytical methods in social sciences ranging from 
psychology and communication studies to international business and 
marketing (Holbert & Stephenson, 2002; Hult et al., 2006; Kumar, 
Sharma, & Gupta, 2017; MacCallum & Austin, 2000). Due to the ex
tensive use of data collected through surveys in the industrial marketing 
field, SEM has been increasingly popular among Industrial Marketing 
Management (IMM) authors, too. Over the last 10 years, hundreds of 
publications in the journal have employed some analytical process re
lated to SEM such as confirmatory factor analysis, path analysis, or 
scale development (Fig. 1). 

Despite such popularity, though, it is rather common to observe 
mistakes in the application of the method that range from minor issues 
such as incomplete or “selective” reporting of needed SEM statistics, to 

more severe errors such as flawed interpretations of SEM-obtained re
sults in manuscripts submitted to IMM. These shortcomings result in the 
rejection of many submissions as they threaten key cornerstones of the 
scientific process such as the use of appropriate measurement instru
ments and the statistically sound testing of theoretical hypotheses. The 
underlying reasons for such shortcomings lie – more often than not – in 
researchers not having a clear understanding of some (very) basic prin
ciples of SEM but still applying the method due to the availability of 
user-friendly SEM software.1 Indeed, there seems to be a strong need for 
the IMM community of authors and reviewers to familiarize themselves 
with key principles of SEM when developing and reviewing research 
manuscripts that use the method. 

Against this background, the objective of the present paper is to 
provide correct answers to a list of the most fundamental questions 
relating to SEM, answers that all members of the IMM community 
should be aware of.2 Our intention is not to provide an advanced 
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technical discussion of SEM statistical metrics (e.g., alternative fit in
dices), estimation methods (e.g., maximum likelihood), or cases of 
special applications (e.g., estimation of latent means). Neither do we 
focus on data-related issues such sample size determination, distribu
tional assumptions violations, or treatment of missing data. There is an 
extensive list of textbooks (e.g., see Bollen, 1989; Kline, 2015;  
Schumacker & Lomax, 2016) and specialized method journals (e.g., 
Structural Equation Modeling; Multivariate Behavioral Research; Organi
zational Research Methods) covering these topics in an excellent manner. 
Instead, we follow a “stick to the basics” approach, focusing on com
municating – to a not necessarily expert audience – some fundamental 
concepts on which the healthy application of SEM relies. 

We organize these concepts in the form of ten specific questions 
based on our personal experiences in applying SEM in our own re
search, reviewing SEM-based articles in a variety of marketing and 
management journals, and teaching SEM courses to research students 
and junior faculty. The answer to each question addresses a core con
cept in SEM that is relevant and applicable irrespective of the specific 
model or data involved. These core concepts are thus of the “must know” 
variety just as the location (and function!) of the accelerator and brake 
pedals are “must know” elements for safely driving a car, any car. 
Understanding these concepts should help researchers make the most 
out of SEM in their empirical applications and remove any uncertainty, 
guesswork, or confusion associated with the procedure. 

The rest of the paper is organized as follows: We present each of the 
ten questions in a standalone section where we discuss key issues that help 
answer the specific question. Subsequently, we provide an illustration of 
these issues using a simple model to showcase the application of the 
method and offer a good example of the method's use and reporting. 
Finally, we develop a table offering guidance to authors by summarising 
the most important “do's and dont's” they need to bear in mind when 
drafting SEM-based manuscripts. We also provide appropriate guidelines 
to reviewers by directing their attention to important questions they 
should pose to authors during the review process to assess the appropriate 
use of SEM and the validity of the resulting findings. 

2. Ten basic questions (and Answers!) about SEM 

SEM, as an analytical method, can be simply understood as a 
combination of factor analysis and multiple regression modeling. The 

factor analysis element of a SEM model is focused on assessing the 
appropriateness of the variables used in the model, while the multiple 
regression element is focused on estimating the hypothesized effects of 
some variables on others. SEM is particularly useful when researchers 
deal with data obtained through questioning respondents via primary 
data collection methods such as surveys and experiments. Because such 
data cannot be readily obtained through secondary sources and often 
constitute the only way to test theoretical hypotheses of interest, SEM 
has emerged as a valuable analytical tool in management and related 
domains where the effects of certain psychological/organizational/ 
strategic concepts are paramount to theory building. Self-report data do 
not represent “perfectly measured information” lacking measurement 
errors and are easily affected by issues that potentially hurt the validity 
and reliability (e.g. respondent fatigue, social desirability biases, 
common method variance, etc.) of corresponding findings if modeled 
through other analytical tools. SEM is particularly effective with 
dealing with this kind of issues, thus helping reach theoretically and 
empirically sound conclusions. 

In light of the above, SEM emerges as a necessary modeling tool in 
the following research contexts, among others. First, being able to as
sess the covariance structure of variables through confirmatory factor 
analysis in a more stringent manner than exploratory factor analysis 
approaches, SEM is particularly helpful for testing the measurement 
instruments' psychometric properties and isolating measurement errors 
that would hurt the tests of theoretical propositions. Second, SEM is 
particularly useful when researchers are interested in developing novel 
measurement scales for constructs and thus in need to assess the va
lidity, reliability and predictability of such scales for future applica
tions. Finally, unlike typical regression models trying to estimate effects 
of a set of independent variables on a single criterion variable, SEM 
offers the ability to simultaneously estimate substantially more complex 
model structures that involve variables operating simultaneously as 
both causes and outcomes of other variables in the model. This enables 
the estimation of both direct and indirect effects among a set of vari
ables of interest. 

2.1. Question 1: what are latent variables and how should they be scaled? 

Unlike variables that can be directly measured using objective data 
such as revenues, profits, costs or number of customers, researchers are 

Fig. 1. Published papers using Structural Equations Modeling in Industrial Marketing Management (2005–2019).  
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often interested in measuring theoretical constructs that cannot be ef
fectively quantified using secondary, observable information – such as a 
retailer's satisfaction with a supplier or the level of trust between two 
business partners. These unobservable variables are called latent vari
ables and represent constructs which are typically measured through 
survey instruments administered to managers, employees or other key 
organizational informants.3 To quantify a latent variable, researchers 
typically rely on those informants' scores on several items (indicators) 
intended to capture the construct of interest. Such items are commonly 
called manifest (or observed) variables because, unlike latent variables, 
they can be directly observed (usually using reported scores on Likert- 
type or other rating scale formats). Although manifest variables are 
necessary for measuring the latent variables of interest, their psycho
metric nature makes them prone to issues of validity and reliability 
such as measurement errors resulting from respondents' response biases 
or measurement instrument characteristics. One of the key benefits of 
SEM is the fact that relationships between latent and manifest variables 
can be formally specified (typically in a linear form) and measurement 
error explicitly accounted for. Generally, constructs can be measured 
either in a reflective manner (i.e., through specifying the manifest 
variables as causal manifestations of the latent variable and whose 
variability is predominantly explained by the latent variable) or in a 
formative manner (i.e., through specifying the manifest variables as 
elements that causally form the latent variable and contribute to its 
variance). 

Going from respondents' scores on a set of observed (manifest) 
variables to the quantification of an unobserved (latent) variable, 
though, requires the specification of a scale format for the latent vari
able. This is necessary because, being unobserved, latent variables do 
not have a “natural” unit of measurement (e.g., what are the units of 
measurement of “trust” or “relationship quality”?). The process of as
signing a unit of measurement to a latent variable is called latent vari
able scaling. This is typically achieved in one of two ways. First, one can 
simply standardize the latent variable by setting its variance to 1 (some 
SEM software, such as LISREL do this by default). Second, one can se
lect one of the manifest variables as the reference or scaling indicator and 
set the value of its loading (i.e., the coefficient capturing the association 
between the latent variable and the indicator) equal to 1. Importantly, 
using a reference indicator and fixing its loading to 1 does not set the 
latent variable equal to the observed indicator. What it does, is assign 
the units of measurement of the reference indicator to the latent vari
able; this means that the variance of the latent variable will be esti
mated in the units of measurement of the reference indicator. Any one 
manifest variable could be used as a scaling indicator – without af
fecting the conceptual meaning of the construct, the estimation of its 
effects, or the fit of the model.4 

Quite often authors fail to mention in their manuscripts what their 
scaling indicators are; sometimes, authors do not even report any of the 
indicators used to measure their constructs (referring instead to past 
papers that used the same operationalization); and sometimes, the in
dicators themselves are reported without, however, any relevant psy
chometric information (e.g., the loadings and error variances of the 
manifest variables – see Question 2 below). Such poor reporting prac
tices prevent readers from properly judging the operationalization of 
the latent variables used to represent the constructs of interest in the 
model. Thus, authors are strongly advised to provide a complete list of 

the items used to measure every latent variable in their models and 
highlight which of these items serve as scaling indicators. 

To illustrate the above points, imagine that a researcher wants to 
test a model depicting how the stereotype a client has about the sup
plier's staff impacts the client's satisfaction with the supplier and the 
willingness to repurchase from this supplier. Let us assume that, after 
reviewing related literature, the researcher proposed a model where 
two fundamental dimensions of the supplier staff stereotype (compe
tence and warmth) affect satisfaction with the supplier and, through it, 
repurchase intent (Fig. 2). 

The model includes two exogenous latent variables,5 namely supplier 
staff competence (ξ1, capturing supplier staff ability to competently 
satisfy the client's business needs – measured with five items, x1-x5) and 
supplier staff warmth (ξ2, capturing the supplier staff's positive intent 
toward the client – also measured with five items, x6-x10). The model 
also includes two endogenous latent variables6: satisfaction with the 
supplier (η1, measured through three items y1-y3, completed by the 
manager handling the supplier, the team working with the supplier, and 
the CEO of the client) and repurchase intent (η2, also measured by three 
items y4-y6 from the aforementioned informants). In short, the model in  
Fig. 2 contains four latent variables and a total of 16 manifest variables 
(indicators).7 In this example, if item x1 = “the supplier's staff is 
competent” is chosen as the scaling indicator for the supplier staff 
competence construct, the researcher would set λ11 = 1; if item x6 = “ 
the supplier's staff is warm” is selected as the scaling indicator for the 
supplier staff warmth construct, the researcher would set λ62 = 1, and 
so on. 

Note that the number of manifest variables in a model determines 
the measurement model relations, that is, the equations linking the latent 
variables to their measures; in Fig. 2 there are a total of 16 such 
equations, of which ten relate to the measures of the exogenous latent 
variables (i.e., x1 = λ11ξ1 + δ1 through to x10 = λ1,10ξ2 + δ10) and six 
to the measures of the endogenous latent variables (i.e., 
y1 = λ11η1 + ε1 through to y6 = λ62η2 + ε6). The number of en
dogenous latent variables determines the structural model relations, that 
is, the equations linking the latent variables to one another. In Fig. 2, 
there are two such equations one relating to the satisfaction with the 
supplier (η1 = γ11ξ1 + γ12ξ2 + ζ1) and one to repurchase intent 
(η2 = β21η1 + ζ2). Finally, the number of exogenous latent variables 
determines the number of non-directional relationships (covariances) in 
the model. In Fig. 2, there is only one such covariance (i.e., φ12 = COV 
(ξ1ξ2)). For an overview of key SEM terms, their definitions and the 
corresponding notation, see Table 1. 

2.2. Question 2: what kind of parameters are we interested in when 
estimating in SEM models? 

In SEM models, researchers are interested in the estimation of sev
eral types of parameters. First, researchers are interested in the loadings 
(λ's) and error variances (VAR(δ)’s and VAR(ε)’s) of the manifest vari
ables; the loadings capture the association between the manifest vari
ables and the latent variable, while the error variances capture the 
remaining (residual) variation of the manifest variables after the in
fluence of the latent variable has been accounted for. These parameters 
are referred to as measurement model parameters and offer a test of 
whether the chosen manifest variables are valid and reliable measures 
of the latent variable (and thus whether using them can be safe when 

3 The terms “constructs” and “latent variables” are often used interchangeably 
in literature. Strictly speaking, however, latent variables are representations of 
constructs in SEM. Thus, in the case of multidimensional constructs, several 
latent variables may be needed to formally represent them in a model. 

4 Note that this holds for reflectively-measured constructs only. For for
matively-measured constructs, researchers should consider alternative options 
for scaling the latent variable (for details, see Diamantopoulos, 2011;  
Diamantopoulos & Riefler, 2011). 

5 Exogenous variables act always as independent (predictor) variables and 
never have error terms. 

6 Endogenous latent variables act always as dependent (criterion) variables 
and always have error terms; however, they can also act as independent vari
ables impacting other endogenous variables (e.g., see η1 in Figure 2). 

7 As an aside, note that η1 is modeled as a mediator of the relationship between 
ξ1 and η2 as well as of the relationship between ξ2 and η2. 
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testing for hypothesized relationships among latent variables). From the 
loading and associated error variance, one also obtains the squared 
multiple correlation (SMC) for each manifest variable. This is essentially 
an R2 value that shows the proportion of variance in the manifest 
variable attributable to the underlying latent variable (e.g., a SMC value 
of 0.80 indicates that 80% of the variance in the manifest variable is 
due to the latent variable to which it is assigned, while the remainder 
20% is due to measurement error). Researchers are also often interested 
in the covariances/correlations between latent variables which are im
portant for validity tests (e.g. discriminant validity assessment). 

Second, researchers are interested in structural model parameters, 

that is, the path coefficients (γ's and β's) capturing the hypothesized non- 
zero directional effects between two latent variables in the model as 
well as the structural error variances (VAR(ζ's)), from which squared 
multiple correlations can be calculated. The latter capture the proportion 
of variance in an endogenous latent variable that is explained by the 
independent latent variables that influence it (i.e., similar again to the 
R2 statistic obtained in conventional linear regression). 

Irrespective of the software package used, SEM estimation generates 
three values: (a) the parameter estimate (e.g., loading or path coeffi
cient), (b) its corresponding standard error (i.e., the standard deviation 
of the sampling distribution of the parameter), and (c) its t- or z-statistic 

Fig. 2. An illustrative structural model.  

Table 1 
SEM terms and notation.     

Term Definition - description Notation  

Exogenous latent variable A latent (unobservable) variable that is used to predict other variable(s) in the model; exogenous variables 
are not explained by any other variable in the model (no arrows leading to endogenous variables). 

ξ (KSI) 

Endogenous latent variable A latent (unobservable) variable that is being predicted by the exogenous variable(s). There is at least one 
exogenous variable predicting it. It can also be predictor of other endogenous variables (in which case it is 
also called a mediator). 

η (ΕΤΑ) 

Manifest variable (indicator) A measured (observed) variable used as an indicator to measure some latent (unobservable) variable in the 
model. It can be an indicator of either endogenous or exogenous latent variables. 

x (exogenous variable indicator) 
y (endogenous variable indicator) 

Endogenous variable error The error (i.e., random disturbances) in the endogenous variable capturing variance unexplained by the 
variable's predictors. 

ζ (ZETA; error of η) 

Manifest variable error The measurement error of the indicators (items) used to measure endogenous or exogenous latent 
variables. 

δ (DELTA; error of x) 
ε (EPSILON; error of y) 

Indicator loading The regressions weight linking manifest indicators to latent constructs (for reflectively-measured 
constructs). It shows how well the latent construct explains the indicator's variance. It helps assessing the 
measurement model, the appropriateness of individual indicators and the psychometric properties of latent 
variables. 

λ (LAMDA) 

Causal relationship A theoretical, directiuonal relationship between any two latent variables in the model. It can be a 
relationship between one exogenous and one endogenous variable or between two endogenous variables. It 
is depicted by a line with an arrow end entering the endogenous variable (unidirectional relationship). 

γ (GAMMA) 
Exogenous variable → Endogenous 
variable 
β (BETA) 
Endogenous variable → Endogenous 
variable 

Non-directional relationship A correlational (non-causal) relationship between two latent exogenous variables in the model. It is 
depicted by a double-arrow linking two exogenous variables. It captures the covariance between exogenous 
variables. 

φ (PHI) 
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which determines the significance level of the parameter (and is 
nothing more than the simple fraction of the (unstandardized) para
meter estimate over its corresponding standard error). 

Measurement and structural model parameters are of equal im
portance when testing theoretical relationships and both should have 
acceptable values for any findings to carry meaning. On the one hand, 
poor measurement model parameters (e.g., low SMCs) imply weak 
measurement of the latent variables, rendering even significant struc
tural parameters questionable or even misleading. On the other hand, 
although structural model parameters are tests of hypothesized theo
retical relationships and researchers want them to have statistically 
significant values, they can still be informative by being non-significant 
(e.g., by suggesting that a hypothesized relationship does not receive 
empirical support by the data). 

Quite often, authors pay less attention to measurement model 
parameters in their manuscripts because they rely on scales that have 
been used in prior literature and/or because they perceive measure
ment parameters to be irrelevant for hypothesis testing. However, 
merely assuming that a measurement instrument successfully used in the 
past is necessarily psychometrically sound when applied to one's own 
data may prove questionable. Appropriate estimation and discussion of 
measurement model parameters is a prerequisite for meaningful sta
tistical inferences about structural model parameters. Similar to how 
any body temperature figure is uninformative (if not dangerous) when 
it is recorded with a broken thermometer, any structural parameter 
estimate is useless unless it is obtained using psychometrically-sound 
measurement instruments. Thus, researchers should always include a 
detailed list of the measurement instruments they use accompanied 
with the corresponding psychometric properties and present the results 
of their measurement model before proceeding with the results of hy
pothesis testing. 

An example of a measurement model using the same latent variables 
as in Fig. 2 is shown in Fig. 3. It is worth noting that although both 
structural and measurement models include the same latent and man
ifest variable, in the measurement model, every latent construct is al
lowed to correlate freely with all other latent variables in the model; 

these covariances (or correlations if we assume standardization – see 
Question 3) are denoted by the φ's and are captured by the two-headed 
arrows in Fig. 3. In contrast, in the structural model of Fig. 2, only the 
directional paths (i.e., γ's and β's linking different latent variables that 
are theoretically expected to be related are included; the only covar
iances/correlations specified are those between the exogenous variables 
(i.e., φ12)). 

2.3. Question 3: what are unstandardized and standardized estimates? 

SEM software usually reports estimated parameters in both un
standardized (raw) and standardized form. Researchers are often unclear 
regarding the difference between the two and which they should report 
in their manuscripts. To illustrate, take the example of a path coefficient 
between an independent latent variable (satisfaction with supplier X) 
and a dependent latent variable (repurchase intent from supplier X) and 
imagine that its estimated unstandardized value is β21 = 0.5 (also as
sume that it is statistically significant). This estimate can be interpreted 
as: an increase of one unit in the scale measuring supplier satisfaction is 
associated with a 0.5 unit increase in the scale measuring repurchase 
intent, all other variables held constant. The word of interest here is unit 
of measurement, as different units of measurement lead to different 
implications for the practical significance and interpretability of the 
observed effect. 

Consider three scenarios where the 0.5 path estimate is obtained. 
Scenario 1: if satisfaction and repurchase intent are both measured on a 
0–100 scale, then the effect is rather weak bearing in mind the scale 
range. Scenario 2: if satisfaction and repurchase intent are both mea
sured on a 1–5 Likert scale, the effect is rather strong. Scenario 3: if 
satisfaction is measured on a 0–100 scale and repurchase intent is 
measured as the “logged difference of the revenues from this customer 
over the last two years”, interpreting the effect and its size could be 
rather troublesome for most. 

To circumvent these problems, researchers often turn to standar
dized path coefficients which show the change in the dependent vari
able associated with an increase/decrease of one standard deviation in 

Fig. 3. An illustrative measurement model.  
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an independent variable, all other variables held constant.8 Apart from 
their easier interpretability when different scale formats for dependent 
and independent variables are used, standardized coefficients enable 
effect size comparisons among different independent variables, even 
when the latter are measured in totally different units. Note that for 
non-directional paths (i.e., covariances), standardized estimates are 
simply the (bivariate) correlations between the variables involved. 

Standardized parameters are particularly useful when researchers 
use numerical figures to measure directly observable dependent vari
ables (e.g., sales figures). As these variables are often measured in 
thousands or even larger units, it is not uncommon to obtain un
standardized coefficients whose numerical values are statistically sig
nificant despite having nominally zero values. In such cases, it makes 
sense to report standardized coefficients that paint a more meaningful 
picture of the impact of the independent variable. 

Overall, we advise researchers to report both standardized and 
unstandardized parameters when presenting their results or, at the very 
least, to explicitly state what type of parameters are reported in the text 
or in relevant tables. 

2.4. Question 4: what is model identification? 

To estimate a model in SEM, one uses existing pieces of information 
(e.g., data inputs from surveys or experimental instruments) to generate 
new pieces of information (i.e., estimates of theoretically important 
parameters). In SEM, there are two types of information pieces provided 
in a dataset: the covariances between any pair of manifest variables and 
the variances of the latter (i.e., the observed variables' covariances with 
themselves). In any structural equations model, the number of available 
pieces of information is given by the formula: s = k × (k + 1) / 2, 
where k is the number of manifest variables included in the model 
(regardless of which latent variable they are assigned to). Turning to 
the pieces of information a researcher needs to estimate, their number 
depends on the model setup (i.e., how many free and constrained 
parameters exist in the model). As further discussed in Question 5, a 
model constraint decreases the pieces of information needed to be esti
mated by fixing a parameter's value (e.g., a zero path) or by requiring it 
to have the same value with another parameter (in which case one 
obtains one estimated value for two or more parameters). 

Model identification refers to whether the researcher has enough 
pieces of information to obtain unique estimates of the parameters to be 
estimated (known as free parameters). The difference between available 
pieces of information (i.e., variances and covariances of the observed 
variables) and free to be estimated parameters represents what is 
known as the model's degrees of freedom. For a structural equation 
model to be identified, the number of parameters that need to be esti
mated should always be less than or equal to the number of unique 
pieces of information provided by the data; in other words, the model 
should have non-negative degrees of freedom. Otherwise, the model is 
under-identified, that is, no unique parameter estimates can be obtained 
(and thus no testing of hypotheses is feasible). If the pieces of in
formation provided by the data exactly equals the number of para
meters to be estimated, the model becomes just-identified, meaning that 
unique parameter estimates are provided but the overall model fit (see 
Question 6) cannot be tested. Finally, if the available pieces of in
formation exceed the number of parameters to be estimated, the model 
is over-identified, that is, one can both obtain more than one set of es
timates of the model parameters and use these additional estimates to 
test the model. For this reason, researchers are urged to develop over- 
identified models by ensuring that the following relationship holds: 
t  <  s, where t = number of parameters to be estimated and s = the 

total number of (unique) variances and covariances among the ob
served variables. 

The importance of model identification is illustrated in Fig. 4. 
Imagine for a moment that the researcher's goal is not to test the overall 
model earlier presented in Fig. 2 but instead to simply test the supplier 
staff competence scale on its own merit. Let us further assume that the 
researcher is considering three alternative scales: one with two items, 
one with three items and one with four items, and that the latent 
variable (ξ1) has been scaled by standardizing it (i.e., fixing its variance 
to 1). 

In the case of the two-item scale, the researcher has three available 
pieces of information from the data (i.e., the variances of the two items 
x1 and x2, and their covariance) but needs to estimate four measure
ment parameters (i.e. the two loadings λ11 and λ21 and the variances of 
the corresponding errors δ1 and δ2). In this case, the model cannot be 
estimated because it has negative degrees of freedom. In the case of the 
three-item scale, the researcher has as many available pieces of in
formation (i.e., the variances of the three items x1, x2 and x3, and the 
three covariances between the items) as those s/he needs to estimate 
(i.e., three loadings λ11, λ21 and λ31 plus the three variances of the 
error terms δ1, δ2 and δ3). This makes the model just-identified, that is, 
all parameters can be estimated but the model cannot be tested as the 
degrees of freedom are zero. Finally, in the case of the four-item scale, 
the researcher has ten pieces of information (i.e., the variances of the 
four items x1, x2, x3 and x4, and the six covariances among the items). 
The last case leads to an over-identified model with two degrees of 
freedom which allow testing the model's fit. 

The above example illustrates that whether a model will be over-, 
just-, or under-identified is not something one learns after conducting 
the analysis. Instead, it is something that a researcher can (and should) 
check before collecting any data to avoid unpleasant surprises (which 
would be preventable if identification issues had been considered in 
advance). It also illustrates that scales with a limited number of in
dicators might create problems of identification when estimating 
measurement models. In general, four options exist to overcome iden
tification problems: (1) setting some parameters to fixed values (e.g., by 
removing a structural path), (2) setting parameters equal to each other 
(e.g., specifying two loadings to be the same), (3) introducing addi
tional information (e.g., adding an indicator) or (4) embedding the 
model within a bigger model (e.g., while the two-indicator measure
ment model in Fig. 4 is under-identified, a model with two latent 
variables with two indicators each, is over-identified with 1 degree of 
freedom). 

2.5. Question 5: what are constraints in SEM? 

There are two types of parameters in SEM: free parameters and 
constrained parameters. Free parameters are those that researchers want 
to estimate in order to assess the quality of their measures and test their 
hypotheses; typical free parameters are the loadings and error variances 
of manifest variables and the hypothesized paths between two latent 
variables. Constrained parameters, on the other hand, are parameters 
that are specified to have either a fix numerical value (e.g., zero) or 
parameters that have the same value with some other parameter in the 
model (e.g., two manifest variable loadings set equal). 

Recalling the discussion of Question 4, it is evident that constraints 
affect model identification. As constrained parameters do not need to be 
estimated, they increase the model's degrees of freedom. More specifi
cally, introducing a constraint will always lead to a deterioration of 
model fit (even if insignificant) while relaxing a constraint will always 
lead to an improvement in model fit (even if insignificant). 
Furthermore, models that are under- or just-identified can become over- 
identified through the introduction of constrained parameters; and 
over-identified models can turn to under- or just-identified ones by 
relaxing constrained parameters. Although introducing arbitrary con
straints in a model purely to achieve model identification is generally 

8 A standardized path coefficient equals the value of the unstandardized 
parameter times the ratio of the standard deviations of the independent to the 
dependent variable. 
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ill-advised and alternative options should be considered to solve iden
tification issues (e.g., avoiding single item measures), doing so might be 
justified in some cases (e.g., when one can make a reasonable as
sumption that all items of a reflectively-measured latent variable carry 
equal loadings). 

Apart from model identification issues, model constraints are im
portant for theory testing purposes and should be assessed with care 
because they can have serious implications for the theoretical sound
ness and the practical relevance of obtained results. Unfortunately, it is 
common practice for researchers to either introduce constraints that 
should not be included in the model based on theoretical arguments or 
freeing constraints by allowing the estimation of relationships that 
should conceptually be set to zero. Typical examples of the former case 
include setting the covariance between two exogenous variables to zero 
(which can be harmful as exogenous variables should almost always be 
allowed to correlate in a model) or setting measurement error variances 
equal to zero (which implies lack of measurement error in manifest 
indicators). Typical examples of the latter case include allowing the free 
estimation of the covariance between the structural error terms of two 
endogenous variables (which should not be allowed unless based on 
theoretically-grounded arguments of the presence of a common omitted 
predictor variable) or allowing the free estimation of error covariances 
between manifest indicators measuring the same latent variable (which 
implies the undesirable presence of other sources of common variation 
beyond the latent variable, and thus, questions regarding the validity of 
the construct's measurement). All these actions lead to artificial infla
tion or deflation of model fit indices in ways which do not enhance the 
theoretical value of the model. 

Researchers typically focus more on free parameters as these cor
respond to theoretical relationships to be tested. In doing so, they often 
miss constrained parameters that become part of the model “by default” 
(i.e., without being consciously/intentionally constrained by the re
searcher). To illustrate this point, Fig. 5 shows that, in the illustrated 
model earlier presented in Fig. 2, there are two parameters (γ21 and γ22) 
– the direct paths from supplier staff stereotype dimensions to re
purchase intention – that have been set to a fixed value (namely, zero). 
These constraints imply that the authors do not theoretically expect any 
effect of supplier staff competence or warmth on repurchase intent that 

is unaccounted by supplier satisfaction; in other words, supplier sa
tisfaction is hypothesized to fully mediate the impact of competence and 
warmth on repurchase intent. These constraints thus have theoretical 
relevance and can be potentially challenged by reviewers. Specifically, 
if one can make a theoretical case about the inclusion of these direct 
paths in the model, then these constrained parameters should be set free 
and tested along with the other free parameters. Moreover, their con
tribution to significantly improving model fit should be noted. Thus, 
authors who choose to exclude these paths from estimation (i.e., assume 
they are zero as in Fig. 5), should have a compelling theoretical argu
ment at hand for doing so and make this argument available to re
viewers when describing their model. 

Overall, we advise authors to (1) be fully aware of the constraints 
included in their models, (2) be prepared to theoretically defend them, 
and (3) not relax model constraints using favorable changes in model fit 
as the only justification for doing so. 

2.6. Question 6: what is model fit? 

One of the main concerns of researchers when using SEM is whether 
their model has a good overall fit. Although most authors know that they 
need to report model fit statistics and reviewers require them to reach 
“make or break” decisions on manuscripts, the concept of fit is perhaps 
the most misunderstood concept in SEM. While most researchers know 
that, in broad terms, model fit captures the extent to which a hy
pothesized model is “in harmony” with the empirical data, few un
derstand the exact notion of fit in the context of SEM. 

Model fit captures the degree to which the data used to estimate the 
model (i.e., the sample covariance matrix S) resembles the form that the 
data should have had if the hypothesized model were true in reality (i.e., 
the implied covariance matrix ).9 Thus, model fit involves the com
parison of two covariance matrices: the covariance matrix of the 

Fig. 4. Model identification.  

9 Formally, the implied covariance matrix is the covariance matrix that 
would be obtained if values of the fixed parameters and estimates of the free 
parameters were substituted into the measurement and structural equations 
which were then used to generate a covariance matrix. 
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manifest variables based on the actual data and the covariance matrix 
of the manifest variables implied by the model. The bigger the resem
blance or congruence between those two covariance matrices, the 
better the overall fit of the model. The formal test of this congruence 
(i.e., that S = ) is provided by a χ2 statistic with degrees of freedom 
equal to the degrees of freedom in the hypothesized model. 

Unfortunately, relying only the χ2 test results to assess model fit is 
problematic as the test is affected by departures from multivariate 
normality, is sensitive to sample size, and also assumes that the model 
fits perfectly in the population. As a result, over the years, a long list of 
additional fit indices have been proposed in the literature along with 
proposed threshold values for judging the acceptability of the model.10 

While this is not the place to discuss the merits and shortcomings of 
different fit indices, researchers should always use multiple indices when 
evaluating overall model fit and avoid “cherry-picking” fit statistics to 
paint a more favorable picture of their models. Thus, from an author's 
perspective, the inclusion or exclusion of any fit index should not be 
made on the grounds of impression management but for purposes of 
striking a balance between parsimony and transparency in reporting. 
Conversely, reviewers should avoid overreliance on a couple of “pop
ular” fit statistics (e.g., RMSEA or CFI), familiarize themselves with the 
strengths/weaknesses of particular fit indices in particular conditions 
(e.g., how sample size or number of estimated parameters can inflate or 
deflate a certain fit index) and appreciate that a value in one fit index 
that falls slightly short of conventional thresholds does not render a 
model automatically invalid if other fit indices show satisfactory values. 

The above discussion has focused on the assessment of the overall fit 
of the model i.e. on global fit. However, in addition to global fit, re
searchers are (and should be) interested in individual parameter esti
mates and their implications for measurement quality and the validity 
of their theoretical predictions (known as local fit). It is important to 
appreciate, in this context, that a model with an acceptable global fit 
can have a fair share of “bad” local fit indices (e.g., non-significant path 
estimates) and, conversely, a model with a poor global fit can have most 

(if not all) structural path coefficients significant. Thus, for a model to 
be supportive of one's theory, both local and global fit need to be sa
tisfactory. Importantly, global and local fit should be assessed both for 
the measurement model and for the structural model and researchers 
should appreciate the fact that sources of poor fit observed during 
measurement model assessment will inevitably spill over to structural 
model fit. 

2.7. Question 7: what is an independence and a saturated model? 

In a typical structural equations model, there are some parameters 
that are free to be estimated (e.g., hypothesized paths) and some 
parameters that are constrained to some fix value (e.g., zero covar
iances among error terms). When assessing overall fit in SEM, one 
sometimes needs a reference model. Two widely used reference models 
are the independence model and the saturated model. An independence 
model is one that does not allow any covariances among the observed 
variables, implying that every variable is orthogonal to all the others. 
Such a model has the maximum degrees of freedom and the highest 
parsimony because most parameters are fixed to zero and thus almost 
nothing needs to be estimated (apart from the variances of the observed 
variables). A saturated model, on the other hand, is one where all ob
served variables are allowed to covary with each other and all available 
pieces of information are used to estimate the model parameters, 
making the model just-identified (i.e., having zero degrees of freedom). 
In other words, an independence model is a model full of constrained 
parameters while a saturated model is a model full of free parameters. 
Thus, any model with some free and some constrained parameters (i.e., 
the typical case of a model researchers try to estimate) can be seen as a 
more constrained version of the saturated model and a less constrained 
version of the independence model. If the independence and the satu
rated models are seen as the two ends of a road, each step from the 
independence model toward the saturated model requires setting a 
parameter free to be estimated at the exchange of one degree of 
freedom. In this sense, a degree of freedom can be understood as the 
price a researcher must pay to obtain an estimate of a parameter pre
viously constrained to a fixed value. Conversely, every time a free 
parameter is constrained (i.e., set to a fixed value or equal to another 
free parameter), there is a gain of one degree of freedom. 

More often than not, researchers do not explicitly mention in their 
manuscripts the relevant independence and saturated models or their 

Fig. 5. Constrained and unconstrained (free) parameters.  

10 Among the most popular fit indices are the RMSEA (Root Mean Squared 
Error of Approximation), the NNFI (Non-Normed Fit Index – also known as the 
Tucker-Lewis Index (TLI)), the CFI (Comparative Fit Index) and the RMSR (Root 
Mean Squared Residual). For a more detailed discussion of alternative fit in
dices and acceptable cut-off values per fit index, see Niemand and Mai (2018),  
Iacobucci (2010) and Steenkamp and Van Trijp (1991). 
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corresponding fit statistics. Although such reporting is not directly 
needed to assess how good their proposed model is in terms of hy
pothesis testing and theory development, independence and saturated 
models are important because many of the global fit indices commonly 
used rely on comparisons between a hypothesized model and the re
levant independence/saturated models. For instance, one of the most 
widely reported fit index in SEM is the Comparative Fit Index (CFI) 
which is calculated by comparing a candidate model with an in
dependence model. Although we would not advise extensive reporting 
on independence and saturated models, it is still important for re
searchers to understand the essence of those models when assessing the 
overall fit of their hypothesized model. 

2.8. Question 8: what is a modification index? 

When researchers estimate SEM models, they are often interested in 
model modification, that is, post-estimation alterations in the model that 
substantially improve overall model fit. Such alterations include the 
estimation of a new model by freeing one or more constrained para
meters (see Question 5). When one previously constrained parameter is 
set free to be estimated, one degree of freedom is lost (because one 
needs to estimate one more parameter with the same available pieces of 
information) and the model fit (always) improves (because one 
“coaxes” the sample covariance matrix and the implied covariance 
matrix to become more similar). 

A modification index is a statistic that shows the minimum im
provement in model fit (in the form of chi-square reduction) that would 
be achieved if the model was re-estimated with a specific, previously 
constrained parameter set free to be estimated, while the rest of the 
model remains unchanged (modification indices are usually 

accompanied by the estimate of the expected value of that parameter as 
well). The presence of many and sizable modification indices implies 
that the original model is misspecified, meaning that many of the re
lationships that should have been included in the model as free para
meters were not (and were thus wrongly specified as zero relationships 
or as values equal to another freely estimated parameter). 

SEM software automatically produces lists of the larger modification 
indices in its effort to help researchers identify which model changes 
would make the model fit significantly better on the available data. 
Unfortunately, researchers have often been using these indices in an 
inappropriate manner, resulting in models with acceptable global fit 
but lacking in theoretical soundness. Given that (1) modification in
dices provide specific information on which parameter(s) should be set 
free, and (2) setting any parameter free always leads to a better fit, it is, 
unfortunately, rather common for researchers to continuously re-spe
cify their original models post-hoc by allowing the free estimation of 
paths they have previously constrained until a favorable global fit is 
achieved. This “end justifies the means” approach, though, violates the 
principles of theory testing and leads to the development of data-driven 
models that cannot be theoretically justified and would rarely replicate 
on different samples. This is because modification indices capture 
purely statistical adjustments to a model based on the idiosyncrasies of 
the specific sample at hand and do not consider whether such adjust
ments also make theoretical sense. For example, modification indices 
may suggest introducing error covariances or allowing cross-loadings of 
indicators, adjustments which in the vast majority of cases cannot be 
theoretically justified. As a result, one of SEM's biggest strengths (i.e., 
identification of a model's key misspecifications) has unfortunately 
become also one of its big weaknesses. 

Bearing the above in mind, the weight is with the author to provide 

Fig. 6. Nested models.  
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(and with the reviewer to require) convincing theoretical justifications 
not only for the hypothesized paths in a model but also for the non- 
hypothesized ones (i.e., zero paths). Moreover, authors should not 
modify their models post-hoc unless they (1) explicitly underscore the 
exploratory nature of their work, and/or (2) are able to replicate their 
revised model on fresh data from subsequent studies and, in particular, 
test the previously identified paths by modification indices as free 
parameters. 

2.9. Question 9: what are nested models? 

Imagine two SEM models (e.g., Model A and Model B) that have 
exactly the same manifest and latent variables. Now, assume that in 
Model A the relationships among latent variables are set free to be es
timated while in Model B some relationships between latent variables 
have been constrained by setting them to zero. In this case, we would 
call B a model nested in A, because Model B can be obtained after 
constraining one or more parameters of Model A to a fix value (e.g., 
zero) or setting them equal to some other parameter. There can be 
several models nested within a particular model because there are nu
merous types and number of parameters that can be constrained, 
leading to several nested models that correspond to different re
presentations of the relationships among the model constructs. 

Fig. 6 presents several nested models. Model A is a model where all 
latent variables are directly connected with any other latent variable in 
the model (i.e., all potential structural paths are free to estimate). 
Models B1, B2 and B3 are three models which are all nested in Model A. 
Model A reduces to Model B1 if the paths (b), (e), and (f) are con
strained to zero. Thus, assuming that the same indicators have been 
used to measure the latent variables in both models, Model B1 has three 
degrees of freedom more than Model A. Model A also reduces to Model 
B2 if path (c) is constrained to zero (resulting in one degree of freedom 
more than Model A). Finally, Model A reduces to Model B3 by con
straining paths (b) and (e) to zero.11 Note that Models B1-B3 represent 
different theoretical propositions. Model B1 is a serial mediation model 

where the impact supplier's staff warmth on repurchase intent is ex
pected to be fully mediated through supplier's staff competence and 
satisfaction with the supplier. Model B2 suggest that only supplier staff 
warmth (but not competence) impacts satisfaction with the supplier. 
And Model B3 suggests that satisfaction with the supplier fully mediates 
the impact of both supplier staff competence and warmth on repurchase 
intentions. 

To sum up, given two models, as long as (1) the same variables are 
included, and (2) one model can be obtained through restricting one or 
more parameters of the other, the models are nested and thus formal fit 
comparisons can show which of the two receives stronger empirical 
support with the data at hand. Such fit comparisons employ what are 
known as chi-square difference (Δχ2) tests and involve subtracting the χ2 

value of the less restricted model from the χ2 value of the more re
stricted model. This difference is also distributed as a χ2 statistic with 
degrees of freedom equal to the difference in the degrees of freedom of 
the two nested models. 

Note that nested model comparisons often provide ammunition to 
authors when counteracting reviewer comments that cast doubt on 
their theoretical model setup. Quite often reviewers doubt the need for 
the inclusion of some structural paths or come up with alternative 
theoretical models to the authors' proposed ones. If these rival models 
are nested within the same overall model as the authors' originally 
proposed model, authors can engage in formal chi-square comparisons 
and establish on empirical grounds which of the proposed rival models 
is more consistent with the data at hand. 

2.10. Question 10: what are equivalent models? 

Two models are called equivalent when they include the same ob
served variables but also have the same number of constrained and free 
parameters (and thus the same number of degrees of freedom). In other 
words, equivalent models differ only in terms of their model structures 
(i.e., in terms of which specific parameters are set free or are con
strained). Despite having different theoretical setups and implications, 
equivalent models have identical overall model fit (and thus cannot be 
compared by means of chi-square difference (Δχ2) tests as is the case for 
nested models – see Question 9). Thus, choice among equivalent models 
must be made based on their theoretical plausibility rather than 

Fig. 7. Equivalent models.  

11 Model B3 is very similar to the model in Figure 2, the only difference is that 
supplier staff warmth is now modeled as an antecedent of supplier staff com
petence. 
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statistical criteria. 
An example of two equivalent models is shown in Fig. 7. One re

searcher could theoretically argue that the correct model is Model A 
where supplier staff warmth acts as a causal antecedent of supplier staff 
competence which, in turn, influences the level of satisfaction with the 
supplier and, through it, intention to repurchase. Another researcher 
could instead argue that it is competence what precedes warmth in the 
causal chain toward satisfaction and repurchase intent and, therefore, 
that the “correct” model is Model B. Testing which of these two med
iation models is superior is not possible using chi-square comparisons 
for the simple reason that these two models have the same model fit and 
the same degrees of freedom. 

The existence of equivalent models should serve as a reminder to 
researchers that their models are not unique in terms of their fit to 
empirical data and that there can be many other models with the same 
variables but different structures that will produce exactly the same fit. 
Thus, just because a well-fitting model is obtained authors should not 
automatically assume that theirs is the only model or the “true” model 
that is consistent with the empirical data at hand. 

3. Conclusion 

SEM is a powerful analytical technique that has been increasingly 
attractive to IMM researchers over the last years. Nevertheless, IMM 
authors often struggle in understanding, using, and reporting the results 
of their SEM analyses appropriately. This results in intentional or un
intentional misuse of the method and, subsequently, threatens the va
lidity of published research findings. The purpose of the present paper 
was to provide a common denominator for every IMM researcher using 
SEM by offering some non-technical explanations to key concepts of the 
method and thus effectively provide the common ground needed for the 
IMM community to safeguard its research contributions. 

In summarising the main takeaways from the issues discussed 
above, we develop a list of guidelines for authors and reviewers/editors 
dealing with SEM-based manuscripts to achieve the highest possible 
accuracy and transparency when reporting or assessing the results of 
SEM applications (Table 2). These guidelines directly correspond to the 
ten fundamental concepts of SEM discussed in this article. Although this 
list is by no means exhaustive and it is expected that both authors and 
reviewers will delve into higher levels of analytical detail in their 

Table 2 
Guidelines to IMM authors and reviewers/editors.     

Issue Advice to authors Advice to reviewers / editors  

Latent variables and 
scaling  

▪ Provide a detailed description of all latent variables and their 
corresponding manifest indicators.  

▪ Discuss your scaling procedure.  
▪ Identify which manifest indicator is used as scaling indicator.  

▪ Request a table with all manifest indicators and their psychometric 
properties (e.g., loadings, indicator reliabilities, etc.).  

▪ Check whether the scaling indicator has face validity in light of the 
construct's conceptual definition and described content domain. 

Parameter estimation  ▪ Provide a full list of important (if not all) estimated parameters, 
accompanied by standard errors, t-values and significance levels.  

▪ Report parameter estimates for both measurement and structural 
models.  

▪ Assess the statistical and practical significance of reported 
parameters.  

▪ Assess the validity of the measurement model before proceeding with 
the assessment of structural parameters.  

▪ Ask for re-estimation of structural model if severe issues with the 
measurement model exist. 

Standardized parameters  ▪ Be consistent in your reporting of parameter estimates.  
▪ If both standardized and non-standardized parameters are reported, 

be clear on what is what.  
▪ Interpret the results appropriately depending on whether your report 

standardized or unstandardized parameters.  
▪ Report effect sizes.  

▪ Ask authors to clarify whether they report standardized or 
unstandardized parameters in text and/or in tables.  

▪ Require effect size estimates.  
▪ Consider the unit of analysis of the used scales and guide authors in 

reporting accordingly. 

Constraints  ▪ Design your model and identify how many parameters are free and 
how many parameters are constrained before testing.  

▪ Make sure that you have a theoretical explanation for your 
constrained parameters.  

▪ Ask authors to provide theoretical arguments for their decision to 
constraint a parameter that should not intuitively be constrained.  

▪ Check for dubious fixed or free parameters in the model (e.g., free 
estimation of error covariances between manifest variables of different 
latent constructs, zero covariances between exogenous variables). 

Model identification  ▪ Calculate your degrees of freedom before collecting data or testing 
the model.  

▪ In case of under-identified models, consider remedies such as 
restricting parameters that should theoretically be unrelated or 
search for latent construct scales with more items.  

▪ Report degrees of freedom in the model results.  

▪ Require the exact number of degrees of freedom for every estimated 
model.  

▪ Check whether authors' reported degrees of freedom are in line with 
the described model setup and, if not, ask for a list of constrained 
parameters to identify discrepancies.  

▪ Assess the sample size in light of these degrees of freedom. 
Independence/Saturated 

models  
▪ Check and potentially report model fit statistics of the independence 

and saturated models.  
▪ Ask for model fit statistics of the independence and saturated models 

if needed. 
Model fit  ▪ Include both global and local fit statistics.  

▪ When discussing the appropriateness of the overall model do not rely 
only on one fit index.  

▪ Require discussion of more than one fit statistics.  
▪ Check whether the reported indices are above the required thresholds.  
▪ Be aware of the sensitivities of each fit index (e.g., sample size, degrees 

of freedom) and comment appropriately. 
Model modification  ▪ Do not include additional paths after the first estimation of the model 

unless a clear theoretical argument for their inclusion can be 
provided.  

▪ Be transparent on which paths or parameters were set free post- 
estimation.  

▪ When extensive modifications are proposed, consider testing the 
updated model on a new sample.  

▪ Ask authors whether any modifications were made after the original 
model testing.  

▪ Ask for theoretical arguments for modifications and added paths 
across manuscript revisions.  

▪ Do not ask authors to consider inclusion of theoretically indefensible 
paths without strong reasons. 

Nested models  ▪ Test rival nested models if alternative theoretical possibilities exist or 
if asked by reviewers.  

▪ Use nested model comparisons to assess reasonable modifications 
such as inclusion of direct (on top of mediating) paths or to assess 
effect size differences between structural paths.  

▪ Make a theoretical case for the nested/rival model asked from the 
authors.  

▪ Make sure that the any models presented as nested are indeed nested.  
▪ Do not ask authors to provide empirical comparisons between non- 

nested models using chi-square tests. 
Equivalent models  ▪ Do not treat equivalent models as nested.  

▪ Do not attempt chi-square comparisons between equivalent models 
as they are impossible.  

▪ Counter rival equivalent models using theoretical arguments.  

▪ Do not ask authors to test among equivalent models in an empirical 
manner (e.g., chi-square comparisons) 
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exchanges, we believe these guidelines represent the minimum level of 
reporting that a SEM-based manuscript should exhibit for an adequate 
representation of authors' efforts and a fair account of reviewers' re
quests. Although most manuscripts are expected to satisfy at least some 
of the guidelines presented in Table 2, we suggest that its contents are 
used as a checklist by authors before final manuscript submission and 
by reviewers as a reminder of areas where mistakes or inappropriate 
reporting are likely to take place. 
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